Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
BMC Infect Dis ; 23(1): 729, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37884870

ABSTRACT

BACKGROUND: Diabetic foot ulcer (DFU) is a major complication of diabetes often impacted by polymicrobial infection in the wound site. Diabetic patients are immunocompromised in nature and hence vulnerable to infection once the skin barrier is breached. Microbiological culture-based methods show that Staphylococcus aureus (SA) is the most frequently isolated bacteria from the DFU wounds. SA and its most clinically important antibiotic resistant variant methicillin-resistant S. aureus (MRSA) are commonly found in the nasal vestibule and colonization of SA as well as MRSA in any wound site can aggravate the condition. We hypothesize that the presence of nasal MRSA carriage can serve as a potential risk factor contributing to the emergence of antibiotic resistance in diabetic foot ulcer wounds. METHODS: In the present study, we have compared the carriage of SA and MRSA in nasal cavity and foot skin among DFU patients (D+F+, n = 50), diabetic patients without any ulcer (D+F-, n = 50), and healthy controls (D-F-, n = 40) by using bacterial culture and PCR based methods. The D+F+, D+F- and D-F-individuals were further categorized based on the presence or absence of MRSA and clinical parameters were compared between MRSA+ ve and MRSA-ve individuals in each of the three groups mentioned above. RESULTS: Our results show that, (a) nasal MRSA carriage is significantly higher (p < 0.05) in D+F+ group than the D+F- and D-F- and significantly associated with wound MRSA carriage in D+ F+ individuals (O.R. = 4.09; 95% C.I. = 1.12-15.05) and (b) the HbA1C level is significantly higher (p < 0.02) in wound MRSA positive, compared to MRSA negative D+F+ patients. Interestingly more than half of the MRSA (64%) isolated from DFU wound were identified to be multidrug resistant. CONCLUSION: These findings strongly suggest that nasal MRSA carriage can act as a risk factor for development of antibiotic resistance in diabetic foot ulcers and it is therefore important to screen nasal and wound sites of these patients regularly. We have also developed a rapid multiplex PCR assay to detect MRSA from clinical isolates or microbial DNA isolated from clinical samples in the hospital settings.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Diabetic Foot/drug therapy , Methicillin Resistance , Staphylococcus aureus , Risk Factors , Staphylococcal Infections/complications , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Multiplex Polymerase Chain Reaction , Diabetes Mellitus/drug therapy
2.
Microbiol Spectr ; 11(6): e0236823, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37905804

ABSTRACT

IMPORTANCE: The role of the upper respiratory tract (URT) microbiome in predicting lung health has been documented in several studies. The dysbiosis in COVID patients has been associated with disease outcomes by modulating the host immune system. However, although it has been known that different SARS-CoV-2 variants manifest distinct transmissibility and mortality rates in human populations, their effect on the composition and diversity of the URT microbiome has not been studied to date. Unlike the older variant (Delta), the newer variant (Omicron) have become more transmissible with lesser mortality and the symptoms have also changed significantly. Hence, in the present study, we have investigated the change in the URT microbiome associated with Delta and Omicron variants and identified variant-specific signatures that will be useful in the assessment of lung health and can be utilized for nasal probiotic therapy in the future.


Subject(s)
COVID-19 , Microbiota , Humans , SARS-CoV-2/genetics , Microbiota/genetics , Nose
4.
Front Cell Infect Microbiol ; 10: 570423, 2020.
Article in English | MEDLINE | ID: mdl-33282748

ABSTRACT

Background: Atopic Dermatitis (AD) has been associated with the loss of function (LoF) mutations in Filaggrin (FLG) gene and increase in relative abundance of specific microbes in the lesional skin, predominantly in Caucasians. Our study aims to determine, in Indian AD patients, (a) the prevalence of FLG LoF and missense mutations, and (b) the nature and extent of dysbiosis and altered microbial pathways with and without mutations in FLG. AD patients (n = 34) and healthy controls (n = 54) were recruited from India in this study and shotgun sequencing was carried out in a subset of samples with adequate microbiome DNA concentration. Host DNA from the same subset of samples was subjected to FLG coding region sequencing and host-microbiome association was estimated. Results: The prevalence of FLG LoFs that are associated with AD globally were significantly lesser in our cases and controls (8.6%, 0%) than those reported in Europeans (27%, 2.6%). Staphylococcus aureus was present only on AD skin [abundance in Pediatric AD: 32.86%; Adult AD: 22.17%], but not on healthy skin on which Staphylococcus hominis (Adult controls: 16.43%, Adult AD: 0.20%; p = 0.002), Cutibacterium acnes (Adult controls:10.84%, Adult AD: 0.90%; p = 0.02), and Malassezia globosa (Adult controls: 8.89%, Adult AD: 0.005%; p = 0.001) were significantly more abundant. Microbial pathways mostly associated with skin barrier permeability, ammonia production and inflammation (Arginine and Proline metabolism, Histidine Metabolism and Staphylococcus aureus infection) were significantly enriched on AD skin metagenome. These pathways are also reported to impair antimicrobial peptide activity. Among AD patients with missense single nucleotide polymorphisms harboring "potentially damaging" alleles in FLG gene, damaging allele dosage was significantly (p < 0.02) positively correlated with relative abundance of phylum_Proteobacteria up to order_Pseudomonadales and negatively correlated with phylum_Firmicutes up to species_Staphylococcus aureus. Conclusion: Our study has provided evidence that host DNA profile is significantly associated with microbiome composition in the development of AD. Species and strain level analysis showed that the microbial pathways enriched in AD cases were mostly found in MRSA strains. These evidences can be harnessed to control AD by modulating the microbiome using a personalized strategy. Our findings on the association of FLG genotypes with the microbiome dysbiosis may pave the way for a personalized strategy to provide a more effective control of AD.


Subject(s)
Dermatitis, Atopic , Microbiota , Adult , Child , Dermatitis, Atopic/genetics , Dysbiosis , Filaggrin Proteins , Humans , India , Intermediate Filament Proteins , Malassezia , Mutation , Mutation, Missense , S100 Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...